Ramps

Direct balls in one direction, either to the left or to the right.

Crossovers

Let ball paths cross over one another. Balls come in one side and exit on the opposite side.

Bits

The bit adds logic. It stores information by pointing to the right or to the left, like a 1 or 0.

Interceptors

When the computer’s objective is complete, the interceptor is used to stop the computer from releasing any more balls.

Gears and Gear Bits

The gear bits are mind-bending, but they add a whole new level of functionality. They also make the computer Turing-complete, which means that if the board were big enough, it could do anything a regular computer can do (in theory!).

Example #1: A simple pattern

This computer is the solution to a puzzle where the objective is to create a computer that makes the pattern blue, blue, blue, red, blue, blue, blue, red...

Example #2: Counting in binary

When you reach puzzle 21, binary numbers are introduced into the puzzles. In the following picture, a number is represented by four bits. To read the number from the bits, all you have to know is that the top bit is worth 1, the second bit down is worth 2, the third bit is worth 4, and the fourth bit is worth 8. Simply add together the values of the bits that are pointed right. For example:

Now, here’s a computer that counts up to 8 in binary. You can ignore the other parts, just watch those four bits.

Example #3: Addition

Puzzle 37 introduces addition. The computer for this example contains two numbers: a 3-bit number on the left (which starts at a value of 5) and a 4-bit number on the right (which starts at a value of 6). When the computer runs, it adds the two numbers together and then stores the sum (5 + 6 = 11) in the number on the right.

Example #4: A more complicated pattern

Here's one of the more difficult puzzles. The goal of this puzzle is to create a pattern that starts with a group of 2 blue balls, then a group of 4 blue balls, and then a group of 8 blue balls, with each group separated by a single red ball.

TOP